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Nomenclature

¢:  specific heat

C: solute concentration

C.: average solute concentration in the solid phase

f eutectic fraction at the solidus

fi solid fraction in the mushy region
h: enthalpy

k: thermal conductivity

L: latent heat of fusion

t: time

T: temperature

x: coordinate.

Greek symbols

o: thermal diffusivity

0: position of phase interface

n: similarity variable

A:  similarity constant (=d/./4ot)

p: density

w: position correction of phase interface.

Subscripts

e: eutectic

I:  liquid

L: liquidus
m: mush

n: new value
o: old value
s:  solid

S:  solidus

w:  wall

* Corresponding author. Tel.: 00 28 2 880 7117; fax: 00 82 2
883 0179; e-mail: jslee@gong.snu.ac.kr

0: 1nitial condition.

Superscript
* ratio of the solid-to-liquid property.

1. Introduction

Analytical solutions are important for the model veri-
fication of models of solidification processes, particularly
those involving binary mixtures where analytical or
numerical solutions are difficult to obtain. A review of
previous analytical studies shows that their approaches
in the solid and liquid regions are somewhat straight-
forward and similar to each other. In the mushy region,
however, different degrees of simplification are assumed
on property and solid fraction, and the validity of those
assumptions are not clearly evaluated. The assumptions
made in the previous studies are summarized in Table 1.

In the present study, an analytical solution is obtained
which is capable of the cooling condition below the eutec-
tic temperature, and of microscopic effect in the evalu-
ation of the solid fraction. The properties in the mushy
region are weighted according to the solid fraction deter-
mined from the phase diagram. The aqueous ammonium
chloride solution (NH,CI-H,0) and aluminium copper
alloy (Al-Cu) have been chosen as test binary systems
because they are widely used as model systems in dendrite
solidification studies, and their thermophysical properties
are well established.

2. Analysis

A schematic of the physical model is depicted in Fig.
1. For simplicity, assumptions invoked in the analysis are
as follows:
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Table 1

Summary of representative analytical studies and their assumptions

Technical Note

Property assumption

Solid fraction assumption

Cooling condition

Constant Variable Length Temp.  Phase diagram T>T, T<T,
Tien and Geiger [1] (@) (0] O
Cho and Sunderland [2] (6] (0] (0]
Muehlbauer et al. [3] O (6]
Ozisik and Uzzell [4] (6] (0] (0] (@)
Kim and Kaviany [5] O O (6]
Worster [6] (6] (@)
Braga and Viskanta [7] (0] (0] (6]
Present (0] O O
0 0 ddg
ks _km Al = hm_hs 1.
(0:) - <5:> + a ) dr
liquid
do
= p(1=f){(a—e)Ts+ L} ;. atx =0
T=T,

Fig. 1. Schematic diagram of the one-dimensional conduction-
dominated solidification of a binary mixture.

1. The process is conduction-dominated.

2. All the thermophysical properties are constant within
each phase. Density is assumed uniform throughout
the phases.

3. Macroscopic species diffusion is negligible compared
to thermal diffusion.

With the above assumptions, model equations de-
scribing temperature distributions in each region can be
written as

oT o°T
pCSE:ksg, 0<X<5s (1)
0 0 0
ohy) = a(kma—Q, bs<x <, @)
oT o°T
PﬂE:le, 0 < x < oo. 3)
x

Initial conditions and boundary temperatures are self-
evident. The heat flux conditions on the solidus and liqui-
dus are

e CI(T)_C_S

®)

oT oT

ko (T) —k (*) =0, atx=9J..
ox) ox ),

The weighted-averaged conductivity is evaluated con-

sidering the local solid fraction in the mushy region as
follows:

ki = fks (1 =1k (6)

where the local solid fraction can be determined from the
solutal mass balance equation given by

_G(D-G, o

where C; is the average solute concentration in the solid
phase. In this study, two limiting cases are considered.
The first is known as lever rule which assumes no solutal
concentration gradient in the solid, and the second is
known as Scheil equation which assumes no mass
diffusion in the solid.

Solutions in the solid and liquid regions can easily
be obtained as functions of the well known similarity
variable, n (=x//4at), as follows:

T-T, _efGum ©
- s S
Ts—Ty  erf( oo ls)
T—T, f
o _erfe® o)

T.—T, erfc(i)’

Unlike in the solid and liquid regions, the temperature
profile in the mushy region can not be obtained in a
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closed-form but can be expressed in the form of the
second order ordinary differential equation as given
below.

L)dfdT
2;1[f;(c*—1)+1+{(c*—1)T— a}d—ﬂd—n (10)

d7T\2df, T
* Dl B RN 7o = -
+(k D(dn dT+']S(k 1)+1}d’72 0,

As < < .

Using the temperature profiles in the solid and liquid
regions, equations (8) and (9), the interface conditions,
equations (4) and (5), can be expressed as follows:

(dT) k* 2 Ts—T. 2
P = e /s
dn ), JF=D+1 Jro* erf(ig//o*)
2{L—(c,— )T} 1 .

_ . .fe(k*—l)‘f'l\l_'f;)is (11
d 2 T,—T, .
— =— e L 12
(dn i+ ﬁerfc(iL) (12

To determine the positions of solidus and liquidus, sim-
ultaneous solution to equations (11) and (12) should be
obtained.

Previous works assume that the properties in the
mushy region are constant and the solid fraction varies
linearly with temperature or length in order to get a
closed-form temperature profile in the mushy region.
With these assumptions, the interfacial heat fluxes,
(dTydn),_,,- and (dT/dn),_, ., can be expressed
explicitly, and substituting these values into equations
(11) and (12) leads to non-linear algebraic equations.
The positions of interface can then be obtained from the
simultaneous solution of the algebraic equations. This
approach, however, is in general not possible when vari-
able properties in the mushy region are taken into con-
sideration, and/or the solid fraction is determined from
the solutal balance equation, because the temperature
profile in the mushy region can no longer be obtained in
a closed-form [7]. Thus, the key point in the solution
procedure is how to find the interfacial heat fluxes from
equation (10) and how to efficiently determine the inter-
face positions from equations (11) and (12).

The heat fluxes at the interface, (d7/dn),_,,— and
(dT/dn),_,, +» are determined numerically by discretizing
equation (10), and interface positions, Ag and 4;, are
corrected as follows:

Do = Jo(l + ). (13)

Substituting the interfacial heat fluxes and interface cor-
rection equations into equations (11) and (12), and
expanding these equations in a Taylor series up to the

second term for the interface position correction, it fol-
lows that

e ) vod
Wg| ——=—=e " — +0ls,
s[ ok dn =g o— ;

o203, Aso
+ Pe %50 T: +0Zs, erf< S: ﬂ

/a*
2 As.o dTr
= Pe %0* —erf< et >|:<7> =+ Q)vs’0:| (14)
Vi o* dn n=175,—

o | 2AL./d .
Wy et [—L<—T> — 2RA£_0j|
ﬁ d]’] r1=/”.[,.0+

dTr -
= <7> erfc(A,)—Re "o (15)
n=7p .+

dn
where P, Q, and R are defined as follows:

P 2k* (Ts—T.,)
T =D +1 o

_ 2 {Li(csicl)Te},
TSk —1)+1 ¢ (1=/9

2
R=—"~T,—T).

N

In the above equations (14) and (15), wg and w, should go
to zero when the exact interfacial positions are obtained.

The solution procedure is summarized as described
below:

0

1. Guess the interface positions, Ag and 4;.

2. Calculate the temperature profile from equation (10)
and then the heat fluxes at the interfaces,
(dT/dn),_,, and (dT/dn),_,, .

3. Find ws and w; from equations (14) and (15), and
then correct the interface positions.

4. Repeat the above procedure until the corrected inter-
face positions, g and /,, fall in the convergence
criterion.

It is checked that the above iterative procedure is
efficiently converged regardless of the initially guessed
interface position in a matter of seconds on a personal
computer. The solution offers computational advantages
over a full numerical solution of governing partial differ-
ential equation in that it only requires the numerical
solution of ordinary differential equation. It should be
noted here that by this analytical method the non-equi-
librium solidification process (Scheil equation) can be
handled with no additional treatment to the previous
equilibrium solidification analysis using the lever rule.
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3. Results and discussion

The validity of the present solution is confirmed by
comparing with Cho and Sunderland’s [2] results
obtained under simplified conditions (constant properties
and linear variation of solid fraction with length). The
comparison shows relative errors of only 0.003 and
0.005% in solidus and liquidus positions, respectively.

The constant property assumption in the mushy region
is examined quantitatively. Since previous works selected
test materials which have little difference in properties
between the solid and liquid phases, evaluation of vari-
able property effect has not been made properly. Figure
2 clearly shows that the constant property assumption
may cause serious error. For example, the liquidus pos-
ition with the constant property assumption is con-
siderably overpredicted relative to that with variable
property by 76% (n.=2.75 and 1.56, respectively)
because the properties of the solid are much different
from those of the liquid (k* = 5.769, ¢* = 0.576).

The results obtained based on various assumptions on
solid fraction are compared in Fig. 3. The discrepancy
due to the assumption of linear variation of solid fraction
with length is obvious. Note that it is merely because the
initial concentration of NH,CI-H,O system is chosen
near the eutectic point (C, = 70%) that the solution
based on linear variation with temperature (dotted line)
nearly coincides with that based on the phase diagram
(solid line). This means that because only a small portion
is solidified in the mushy, the effect of the solid fraction
model may not be apparent. This fact is evidenced when
the solution is obtained with the initial concentration
chosen far from the eutectic point.

The effect of the two limiting microscopic models for
Al-Cu is shown in Fig. 4. The results for NH,CI-H,O
system are not demonstrated because the partition
coefficient, &, for NH,CI-H,O is zero and the two micro-
scopic models thus become identical.
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Fig. 3. The effect of the solid fraction assumption for NH,Cl-

H,0 (C, = 70%).
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Fig. 2. The effect of variable mushy property weighted by the
solid fraction from the phase diagram for NH,CI-H,O
(Cy = 70%).
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Fig. 4. The effect of microscopic models for Al-Cu with initial
concentration, Cy = 3%.

4. Conclusions

Analytical and approximate solutions to the con-
duction-dominated solidification of binary mixtures are
presented, which are distinct from previous works in the
following aspects: (1) solid fraction is determined from
the phase diagram; (2) thermophysical properties in the
mushy region are weighted according to the local solid
fraction; (3) non-equilibrium solidification can be simu-
lated; and (4) the cooling condition of below-eutectic
temperature can be accommodated.

The difficulty associated with determining unknown
interface locations which is a key point of solution
method is overcome by an efficient interface location
updating algorithm.
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